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Vectorial Wave Analysis of Inhomogeneous
Optical Fibers Using Finite Element Method

KATSUNARI OKAMOTO anDp TAKANORI OKOSHI, MEMBER, IEEE

Abstract—A vectorial wave analysis of the propagation character-
istics of radially inhomogeneous optical fibers is presented. The
vectorial wave equation is first translated into a variational problem,
and then it is solved by using the finite element method. The results
are compared with those of the scalar wave analysis. The error caused
by the scalar wave approximation is discussed for wide variety of
refractive index profiles. It is shown that the error caused by the
scalar wave approximation is about 0.1 percent for eigenvalues and 1
percent for delay time, when the relative index difference between
core and cladding is 1 percent.

1. INTRODUCTION

N THE ANALYSIS of transmission characteristics of

optical fibers, the scalar wave approximation is often
made because it simplifies the analysis remarkably whereas
the resulting error is tolerable in most cases. To obtain the
estimate of the error, however, the result of the analysis must
be compared with that of rigorous (vectorial wave) analysis.

So far two methods of the vectorial wave analysis of
inhomogeneous optical fibers (having arbitrary refractive-
index profiles) have been presented: 1) one using the stair-
case approximation [1]-[5], and 2) the other using the direct
numerical integration [6}-[8]. Among them one paper [2]
showed the error caused by the scalar wave approximation,
but only for quadratic index profiles.

This paper presents first a new method of the vectorial
wave analysis of the propagation characteristics of inho-
mogeneous optical fibers using finite element method. In the
latter half of this paper, results of the vectorial wave and
scalar wave analyses are compared for a wide variety of
refractive index profiles. Itis shown that the errors caused by
the scalar wave approximation in the eigenvalue and delay
time are about 0.1 and 1 percent, respectively, when the
relative index difference A = (n3 — n3)/2ni =1 percent,
where #; and n, denote the maximum index in the core and
the cladding index, respectively.

II. VARIATIONAL FORMULATION

We first express the axial components of electric and
magnetic fields as

E. = (% to/B)O(r) cos (0 + ¢,) (1)
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H, = we¥(r)sin (n0 + ¢,), n: integer, ¢, =0 or n/2  (2)

where » denotes the angular frequency, ¢, the maximum
permittivity in the core, f the propagation constant, and »n
the rotational mode number. From Maxwell’s equations,
the following vectorial wave equations for ®(r) and W(r) are
obtained [9}:

1d[(1-f) do sy m2
- dr (x—f)rW}_F [k ”1(X—f)";’5]
) PO L S B
(X*f)(D+V(1 X)q}dr(x—f) 00
et o)
1 n_d 1
et renl) e @
where
f(r) &1 —g(r)/e, (5)
12 1= o e po. (6)

From Maxwell’s equations, the transverse components of
electric and magnetic fields are also obtained; these are

E, = —;Gi—f) {dg - }cos (0 +¢)  (7)
E(,:jrlf)[%\; +§(D}sin (n0 + ) (8)
B e G (iilf +(Z11_:{7)):®}

- sin (n6 + ¢,,) ©)
Ho= o e g ar *M

- cos (nf + ¢,). (10)

The solutions ®(r) and W(r) which satisfy the above
vectorial wave equations ((3) and (4)) and the boundary
conditions (the continuity of E,, H., E,, and H, at the
core-cladding boundary: r = a)may also be obtained as that
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Fig. 1. Relation between the refractive index profile n(r) and the nor-

malized propagation constant S/k.

solution of the variational problem to make the following
functional stationary (see Appendix I):

1 (1 —f)[(d®\: n?
wow= Ly G |G o]
k*n? 5 1
“li- L) ‘o (1-f)D rdr+. =P
[ +o ‘Pz}rdr—kz "a‘I’zrdr
+| 2n );r(w)d (= 2A)
[ 11“__2; ) + 20000 a) + 0, ¥
(11)
where
w = (8% — k*n3)*%a (12)
Qp = WK, (WK, () (13)

and K, denotes the nth order modified Bessel function of the
second kind.

I1I. SOLUTION OF THE VARIATIONAL PROBLEM BY
FINITE ELEMENT METHOD

To solve variational problems, the Rayleigh-Ritz method
is most commonly used. (For the analysis of fibers, see [10]
for example.) However, in the present case it cannot be used
for the following reason. From (5) and (6),
[2() - B2/°)

ni

x—f)= (14)

Since B2/k?* varies in the range n? < g*/k? < n? for propa-
gating modes, (x — f) becomes zero at one point (r = r,) as
shown in Fig. 1. The Rayleigh-Ritz method cannot be
applied to the present problem because the term (y — ) in
the denominator of (11) becomes zero at r = r,, where the
integrand diverges.

This difficulty can be avoided by using the finite element
method. We first divide the region between r =0and r = a
into N elements (see Fig. 2), and express the values of ®(r)
and W(r) at r = r; as

®l = (D(rl), lpl = ‘P(I‘l), l = O, 1, 2, et N (15)

Note that the division is made so that r, coincides one of the
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Fig. 2. Finite element representation of ®(r).

r’s. In each of these elements, functions ®(r) and W(r) are

expressed as
() = @, F1o(r) + O, F (1),
W(r)="¥,_ 1 F1-1(r) + ¥, Fi(r),

roy<r<r (16)
(17)

where F,_(r) and F,(r) are continuous functions of r
satisfying the following conditions:

Fi_i(r)=0
Fz(”l) =1

Fioy(r-)=1

Fri-1)=0, (18)

In those elements which do not include the singular point
(r = r,), the function F(r)’s are approximated, as is done in
most finite element analyses [11], by linear functions as
shown in Fig. 2. In those elements including r ,, to avoid the
divergence of the integral, ®(r) and ¥(r) are approximated
as

Ar " + Br*) —
— B —

(Cr "+ DP)o =
(Cr " = D)o~

where n is the rotational mode number, and constants A4, B,
C, D are determined so that ®(r) and ¥(r) coincides with @,
and ¥, at r=r, and with ®,_, and ¥,_,at r=r,_,,
respectively.

To make the functional ! stationary with respect to all the
parameters @ and W, the following conditions must hold
for all I:

(19)
(20)

ol ol

220, e =0
- &g, Y

(21)

Substituting (16)}-(20) into (11) and using the stationary
conditions: (21), we obtain a matrix equation of the form

S T||® -0
T P||¥|

where @ = [@,, ®,, *--,
S, T,Pare (N +1) x

(22)

(DN]T5 \P = [‘PO’ \Pla T, \PN]Ta and
(N + 1) matrices whose elements are
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given as follows. (For space limitations only significant
elements are shown.)

k2n2 r
Spp-1= _(1 _1X) Jrz—1 (L =f)F,_yFyrdr
N 1 - Tl (1 _f)
(1 - X) ri-y (X _f)
dF,_, dF, n?
{ dr dr +“r3Fl._1FI le’ (23)
n 1 d
T, - —— —(F;_F)d 4
Li-1 L—l Py dr( -1 Fi)dr (24)
P, _y= —k*n? "” F,_(Fyrdr+ |‘” !
’ “ri-a “ri—y (X —_f)
dF,_, dF, n*
o dr + 2 F,_F|rdr. (25)
In order that a nontrivial solution of (22) exists,
ST
T P =0 (26)

must hold. This equation is the rigorous eigenvalue (disper-
sion) equation which determines the propagation constants
of an inhomogeneous optical fiber.

IV. ScALAR WAVE APPROXIMATION

Since for practical fibers y and | f(r)| are much smaller
than unity, we may approximate in (3) and (4) as

1-f(ry=1, (27)
Under such approximations, as shown by Yamada and
Inabe [12], adding (3) and (4) or subtracting (3) from (4), we
may obtain the scalar wave equations (see Appendix II). If

we put the scalar wave approximation (27) into (11), the
functional may be simplified as

v dr — k*n? | ®%r dr

‘0

Ll v

1—y=1

rdr — k*n3 w2 gy

0
¢ 2n d 1
+ — (O¥)r dr — ——=
P F AL Ty

[ ®2(a) + 2n0(a)¥(a) + Q, F2(a)]. (28)

By solving the above variational problem by the aforemen-
tioned finite element method, we obtain the eigenvalue
equation corresponding to (26) having a form
P T
| @)

r pl=o
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Fig. 3. The accuracy of the finite element method (FEM) versus the
number of divisions. Parameter v_1s the normalized cutoff frequency of
a uniform core fiber for the TE,,-mode obtained by the FEM, whereas
Jo.1 (= 2.4048256 ---} is the exact solution.

This is the eigenvalue equation obtained with the scalar
wave approximation.

V. NUMERICAL RESULTS

The accuracy of the finite element method analysis itselfis
first investigated. The normalized cutoff frequency v of the
TE,,-mode in a uniform core fiber is computed by the finite
element method, and compared with the exact value:
Jjo.1 = 24048256 --- [13]. The accuracy thus estimated is
shown in Fig, 3 as a function of the number of divisions in the
finite element method analysis.

Next, the error caused by the scalar wave approximation
is investigated by comparing the results of analyses using
(26) and (29). For this purpose we consider index profiles
given as

n’(r)=ni[l — 2pA(r/a)’]. O0<r<a (30)
where p is a parameter representing the presence of step or
valley at core-cladding boundary. Examples of the profiles
expressed by (30) are shown in Fig. 4.

Fig. 5(a) and (b) shows the error in the eigenvalue
(normalized frequency v) caused by the scalar wave approxi-
mation as functions of o and p, respectively.! The term
“error in the eigenvalue” requires comments. In the present
estimation of the error, for the sake of convenience, the
errors (difference between solutions of (26) and (29)) in the
eigenvalues (the normalized frequency v) which give three
specific propagation constants f for the TM ,-mode are
computed first.2 The specific propagation constants are

! One might doubt why the error in r is plotted instead of that in § (or
x). It is simply because the error appears in such a form that the v—x curve
is translated in the horizontal direction (parallel to the v-axis). without
changing its overall shape remarkably. (In such a case the error m § (or x)
is strongly dependent upon df/dv (or dx/dv) and hence upon v.) Besides,
the estimation of error in terms of v 1s better consistent with that of df/dw
(see Fig. 7).

2 The estimation of error for higher order modes 1s left for further study.
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Fig. 4. Examples of refractive index profiles used in the numerical
analyses.

chosen as x = 0.25, 0.50, and 0.75 where x is a normalized
parameter defined as

2 2

ny —n;
The computed errors are then averaged for the three points
to obtain ¢ shown in the ordinate of Fig. 5(a) and (b). It is
found that when A = 1 percent, which is the typical index
difference in multimode fibers, the error caused by the scalar
wave approximation is of the order of magnitude of 0.1
percent.

Next, the error caused by the scalar wave approximation
in the group delay is estimated. As a preliminary step, we
first compute the exact group delay by using the vectorial
wave analysis. Fig. 6 shows the exact normalized delay
difference defined by

c dp

ny dw

,  c: light velocity (32)

as a function of the exponent «, for the TM,; mode at a
frequency where x = 0.3. Note that D is a parameter propor-

p=1.0

€ =|v-vyl/vyx100

€ {%}

A=0.01

0.1

0.1

a=2
€ =|v-vgl/vp x100

A4 =01

0 /

E(%)-

A=0.01
01
4=0.001
0.01 /
s s L
0.5 1.0 15 2.0 2.5

Fig. 5. Error in the eigenvalue caused by the scalar wave approximation:
(a) Functions of . (b) Functions of p.

tional to the delay difference between the TM;;-mode and a
fictitious wave having velocity equal to n, /c (see the ordin-
ate in the right of Fig. 6). It is found in Fig. 6 that the delay
difference is reduced remarkably (to about 1 ns/km) at
o = 2; this is a well-known fact [14].

Next the difference between the rigorous value of D and
that computed upon the scalar wave approximation was
computed; the result is shown in Fig. 7for A = 10,1,and 0.1
percent as functions of «. When A = 1 percent, the error is
approximately 0.01 ns/km for o = 2 (1 percent of D),and 0.8
ns/km for a = 10 (6 percent of D). Note that the percentage
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Fig. 6. Variation of the delay time for various exponents o and p = 1.0,
at x = 0.3 (exact solution). n, = 1.5.

error in the delay difference is much larger than that in the
eigenvalues.

VI. CONCLUSION

Vectorial wave analysis of propagation characteristics of
multimode optical fibers has been performed, and the error
caused by the scalar wave approximation has been
estimated. It has been found that the error in the eigenvalues
is tolerable, whereas that in the group delay difference is
relatively large.

APPENDIX |
ProOOF OF THE VALIDITY OF THE FUNcTIONAL (11)

We assume that I[® W] is stationary for ® = @, and
Y = Y, and consider slightly deviated functions

O(r) = Do(r) + 8 - n(r) (A1)
W(r) = ¥olr) + 6 () (A2)
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Fig. 7. Error in the delay time caused by the scalar wave approximation
for p = 1.0, at x = 0.3. Derivatives (df/dw), and (df/de), denote the
delay time per unit length obtained by the vectorial wave and scalar
wave analyses, respectively n; = 1 5.

where n(r) and {(r) are arbitrary continuous functions of r,
and 6 denotes a small real quantity. Putting the above ®(r)
and ¥(r)into (11) and assuming that I[®,¥] is stationary for
6 = 0, we obtain

Lol L e favdn
2 Blomo (=)o G—1) | dr dr
kin? o -4 1

I ey

a¥, dC ‘I’OC rdr — k*n? ' Y, (rdr
dr dr

(1)011] rdr
§=0

.a

n d 1

+ | (@0 ¢ + Won) dr — —

‘o (X*‘f)a;
(1-24A)

[Q”W

+ nWy(an(a) + Q,;‘Po(a)((a)} = 0.

Oy (a)(a) + ndg(a)(a)

(A3)
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By partial integration, (A.3) may be rewritten as

1 oI () L d [(1—f) dd,
2 0™ s § —x){?é? {(X—f)rdr}
+ et —n -] =00,
+§(1—X)‘PO%(;i—f)}rdr
-, “{%%inﬂ %H
r ()c——f)\P0

ok [ )
S} o

Since n(r) and {(r) are arbitrary functions of r, this equation
shows that ®y(r) and ¥,(r) satisfy the vectorial wave
equations to be solved (3) and (4) and the boundary
conditions at r = a:

- (Xflm [% ¥o(a) + Zcbo(a)} (A.5)
@ g ).

which give the continuity of the electric and magnetic fields,
respectively. (The left-hand sides of (A.5) and (A.6) express
the fields in the core at r = a (see (8) and (9)). The right-hand
sides express those in the cladding.)

ApPENDIX 11
PROOF THAT (27) GIVES THE SCALAR WAVE EQUATIONS

We first put the scalar wave approximation (27) into (3)
and (4). Then, addition and subtraction of these equations
yield

1;{&%5%?] + [kzn%(x ~/) ~-]
ot el -0 0
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Va1 W) [
il ) ¢ o0
1 n. d 1
«—n" " E(F)ZO (A5)
where
o(r) = [®(r) + P()]/2 (A9)
Y(r) = [®() — P(r))/2. (A.10)

Next we introduce transverse field functions R yg(r) and
Rgy(r) defined as

S S L
Rpsl(r) = (X_f)[dr + r¢} (A.11)
- [0 e

Substituting (A.11) into (A.7) and (A.12) into (A.8). we
obtain

1d dR yx 5 n—1)»?
T dr (i‘ dfb) + [’»’“"%(X _f) - (,\2)} Ryz=0 (A.13)
14d dR n+1 2
rﬂ(’ df“) + [kzni(x —f)—(ﬁr2 ) }REH:O (A.14)

which are known as the scalar wave equations.
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