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Vectorial Wave Analysis of Inhomogeneous
O)ptical Fibers Using Finite Element Method

KATSUNARI OKAMOTO AND TAKANORI OKOSHI, MEMBER, IEEE

Abstrac,!-A vectorial wave analysis of the propagation character-

istics of radially inhomogeneous optical fibers is presented. The
vectorial wave equation is first translated into a variational problem,

and then it is solved by using the finite element method. The results

are compared with those of the scalar wave analysis. The error caused
by the scalar wave approximation is discussed for wide variety of

refractive index profiles. R is shown that the error caused by the
scalar wave approximation is about 0.1 percent for eigenvahres and 1
percent folr delay time, when the relative index difference between
core and cladding is 1 percent.

1. INTRODUCTION

INTH13 ANALYSIS of transmission characteristics of

optical fibers, the scalar wave approximation is often

made because it simplifies the analysis remarkably whereas

the resulting error is tolerable in most cases. To obtain the

estimate of the error, however, the result of the analysis must

be compared with that of rigorous (vectorial wave) analysis.

So far two methods of the vectorial wave analysis of

inhomogeneous optical fibers (having arbitrary refractive-

index prclfiles) have been presented: 1) one using the stair-

case approximation [1]–[5], and 2) the other using the direct

numerical integration [6]-[8]. Among them one paper [2]

showed the error caused by the scalar wave approximation,

but only for quadratic index profiles.

This paper presents first a new method of the vectorial

wave analysis of the propagation characteristics of inho-

mogeneo us optical fibers using finite element method. In the

latter half of this paper, results of the vectorial wave and

scalar wave analyses are compared for a wide variety of

refractive index profiles. It is shown that the errors caused by

the scalar wave approximation in the eigenvalue and delay

time are about 0.1 and 1 percent, respectively, when the

relative index difference A = (n; – n~)/2n~ = 1 percent,

where n ~ and nz denote the maximum index in the core and

the cladding index, respectively.

II. VARIATIONAL FORMULATION

We first express the axial components of electric and

magnetic fields as

EZ = ((oz&l ~O//?)@(r) COS (no + @n) (1)

Manuscript received April 14, 1977; revised June 1, 1977.
K. OIcarnoto was with the Department of Electronic Engineering,

University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. He is now with
Nippon Telegraph and Telephone Public Corporation, Ibaraki Electrical
Communic:itton Laboratory, Tokal, Ibaraki, 319-11 Japan

T. Okoshi M with the Department of Electromc Engineering, University

of Tokyo, Elunkyo-ku. Tokyo 113, Japan.

H== cml V(r) sin (rrO + @n), n: integer, ~~ = O or rc/2 (2)

where o denotes the angular frequency, &~ the maximum

permittivity in the core, B the propagation constant, and n

the rotational mode number. From Maxwell’s equations,

the following vectorial wave equations for ~(r) and Y(r) are

obtained [9]:

where

f(r) A 1 – E(J_)/E1 (5)

~ ~ 1 – p2/o)%l jl~. (6)

From Maxwell’s equations, the transverse components of

electric and magnetic fields are also obtained; these are

1
E,= –j–—

[1
~ +:Y cos(r@+q5J

(x-f) dr
(7)

1

[1
N +~~ sin(n~+~n)

“=%-f) d’
(8)

PIH,= –j—

[

CPP (l-j)n@

—+(l-x)ro~~O’ (X –f ) dr 1
0 sin (M + 4.) (9)

“ Cos (no + on). (lo)

The solutions cD(Y) and Y(r) which satisfy the above

vectorial wave equations ((3 ) and (4)) and the boundary

conditions (the continuity of ~z, H=, E@, and HO at the

core-cladding boundary: r = a) may also be obtained as that
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Fig. 1. Relatlon between the refractive index profile n(r) and the nor-

malized propagation constant /l/k.

solution of the variational problem to make the following

functional stationary (see Appendix I):

–J”M[p)2+g.2],d,
l[@’Y] = (1 ~ X) , (X -~) dr

22a

-(l-;)Jo
(1 -f)@2rdr+ ~a~

‘o (x–f)

“ i:) 1

dy 2 n2 .a

dr
+PY2 rdr–k2n~ Y2r dr

‘0

where

yv = (f12 – k2n~)1/2a (12)

Clp = wK:(w)/KJw) (13)

and K. denotes the nth order modified Bessel function of the

second kind.

III. SOLUTION OF THE VARIATIONAL PROBLEM BY

FINITE ELEMENT METHOD

To solve variational problems, the Rayleigh-Ritz method

is most commonly used. (For the analysis of fibers, see [10]

for example.) However, in the present case it cannot be used

for the following reason. From (5) and (6),

(14)

Since ~2/k2 varies in the range n; < /32/k~ < n2 for propa-

gating modes, (X – .f) becomes zero at one point (r= rP) as
shown in Fig. 1. The Rayleigh–Ritz method cannot be

applied to the present problem because the term (X – ~) in

the denominator of (11) becomes zero at r = rP, where the

integrand diverges.

This difficulty can be avoided by using the finite element

method. We first divide the region between r = O and r = a

into N elements (see Fig. 2), and express the values of O(r)

and Y(r) at r = rl as

01= @(rl), Y~ = Y(rt), 1=0,1,2,”’”, N. (15)

Note that the division is made so that rP coincides one of the

o ‘k-l ‘1, a(=rN) r

Fig. 2. Finite element representation of @(r)

rl’s. In each of these elements, functions @(r) and Y(r) are

expressed as

where Fl _ ~(r) and Fl(r) are continuous functions of r

satisfying the following conditions:

F1-l(rt-l)= 1, FL-l(rl)=O

Fl(rl - ~) = O, F1(rJ = 1. (18)

In those elements which do not include the singular point

(r= r,), the function F’l(r)’s are approximated, as is done in

most finite element analyses [11], by linear functions as

shown in Fig. 2. In those elements including VP,to avoid the

divergence of the integral, Q(r) and Y(r) are approximated

as

@(r) = (Ar-” + BP) – (Cr-” + Dr”)(~ –f)= (19)

Y(r) = (Ar-” – B}J) – (Cr-” – D#)(x –f)’ (20)

where n is the rotational mode number, and constants A, B,

C, D are determined so that ~(r) and Y(r) coincides with @P

and YP at r = rP and with @P. l and YP. l at r = rp.. -l,

respectively.

To make the functional I stationary with respect to all the

parameters @ and Y, the following conditions must hold

for all 1:

-g=o, g-o<
1 1

(21)

Substituting (16)-(20) into (11 ) and using the stationary

conditions: (21 ), we obtain a matrix equation of the form

[ 1[1
ST@
Tpy=o (22)

where 0= [O., @l, CC”,(b~]~,Y= [Ye, Yl, ...,y~]~,and
S, T, P are (N + 1) x (N + 1) matrices whose elements are



OKAMOTO P,ND OKOSHI : VECTORIAL WAVE ANALYSIS 111

given as follows. (For space limitations only significant

elements are shown. )

=(r’ (l-f)F,.lF,l”dr
‘[”-’ = -(1 -~) ,l_,

J

.“ (1 -f)

+(1 :x) ,l_, (~-f)

“[

dF1- ~ dFl n2

I~z+— F1-l F1 rdr
r’

(23)

(24)

In order that a nontrivial solution of (22) exists,

ST

TP
=0 (26)

must hold. This equation is the rigorous eigenvalue (disper-

sion) equation which determines the propagation constants

of an inhornogeneous optical fiber.

IV. SCALAR WAVE APPROXIMATION

Since for practical fibers x and I f(r) I are much smaller

than unity, we may approximate in (3) and (4) as

1 –f(r) = 1, l–~=1. (27)

Under such approximations, as shown by Yamada and

Inabe [1 2], adding(3) and (4) or subtracting (3) from (4), we

may obtain the scalar wave equations (see Appendix II). If

we put the scalar wave approximation (27) into (11), the

functional may be simplified as

I[@,Y] = L“&JH2’$”21
r dr — k’n~

+!’: XII;:+2”I

,0

r dr — k’n! Y2r dr
‘o

+ \:&:(@y)rdr- (x _l,A)
~ [Qfl@2(a) + 2n@(a)Y(a) + QBY2(a)]. (28)

By solving the above variational problem by the aforemen-

tioned finite element method, we obtain the eigenvalue

equation corresponding to (26) having a form

IDT[

(29)

,o-3~

10 20 30 LO 50
NUMBER OF DIVISION N

Fig. 3. The accuracy of the finite element method (FEM) versus the
number of divisions. Parameter UCM the normalized cutoff frequency of

a uniform core fiber for the TEO1-mode obtained by the FEM. whereas

Jo,, (= 2.4048256 ~.. ) is the exact solution.

This is the eigenvalue equation obtained with the scalar

wave approximation.

V. NUMERICAL RESULTS

The accuracy of the finite element method analysis itself is

first investigated. The normalized cutoff frequency u of the

TEO ~-mode in a uniform core fiber is computed by the finite

element method, and compared with the exact value:

jOl = 2.4048256 “ ~. [13]. The accuracy thus estimated is

showrt in Fig. 3 as a function of the number of divisions in the

finite element method analysis.

Next, the error caused by the scalar wave approximation

is investigated by comparing the results of analyses using

(26) and (29). For this purpose we consider index profiles

given as

n2(r) = n~[l – 2pA(r/a~], f)<r<a (30)

where p is a parameter representing the presence of step or

valley at core-cladding boundary. Examples of the profiles

expressed by (30) are shown in Fig. 4.

Fig. 5(a) and (b) shows the error in the eigenvalue

(normalized frequency u) caused by the scalar wave approxi-

mation as functions of u and p, respectively. 1 The term

“error in the eigenvalue” requires comments. In the present

estimation of the error, for the sake of convenience, the

errors (difference between solutions of (26) and (29)) in the

eigenvalues (the normalized frequency u) which give three

specific propagation constants ~ for the TMO ~-mode are

computed first.’ The specific propagation constants are

1 One might doubt why the error in r is plotted instead of that in ~ (or

x). lt iS simply because the error appears in such a form that the u–x curve
is translated in the horizontal direction (parallel to the u-axis). without
changing its overall shape remarkably. (In such a case the error m D (or x)
is strongly dependent upon dfl/du (or d.x/do) and hence upon u.) Besides,
the estimation of error in terms of u m better consistent with that of dfl/dm
(see Fig. 7).

2 The estimation of error for hmher order modes M left for further study.
I I
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Fig. 4. Examples of refractive index profiles used in the numerical

analyses.

chosen as x = 0.25, 0.50, and 0.75 where x is a normalized

parameter defined as

(31)
I

0.5 1.0 15 2.0 25
v

(b)

The computed errors are then averaged for the three points

to obtain & shown in the ordinate of Fig. 5(a) and (b). It is

found that when A = 1 percent, which is the typical index

difference in multimode fibers, the error caused by the scalar

wave approximation is of the order of magnitude of 0.1

percent.
Next, the error caused by the scalar wave approximation

in the group delay is estimated. As a preliminary step, we

first compute the exact group delay by using the vectorial

wave analysis. Fig. 6 shows the exact normalized delay

difference defined by

Fig. 5. Error in the eigenvalue caused by the scalar wave approximation:
(a) Functions of ez.(b) Functions of p.

tional to the delay difference between the TMO ~-mode and a

fictitious wave having velocity equal ton ~/c (see the ordin-

ate in the right of Fig. 6). It is found in Fig. 6 that the delay

difference is reduced remarkably (to about 1 ns/km) at

a = 2; this is a well-known fact [14].

Next the difference between the rigorous value of D and

that computed upon the scalar wave approximation was

computed; the result is shown in Fig. 7 for A = 10, 1, and 0.1

percent as functions of a. When A = 1 percent, the error is

approximately 0.01 ns/km for u = 2 (1 percent of I)), and 0.8

ns/km for a = 10 (6 percent of D). Note that the percentage

C dfi
D= ——–1 , c: light velocity

nl dw
(32)

as a function of the exponent cx, for the TMO ~ mode at a

frequency where x = 0.3. Note that D is a parameter propor-
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Variation of the delay time for various exponents a and P = 1.0,

at x = 0.3 (exact solutlon). rrl = ‘1.5.

error in the delay difference is much larger than that in the

eigenvalues.

VI. CONCLUSION

Vectorial wave analysis of propagation characteristics of

multimode optical fibers has been performed, and the error

caused by the scalar wave approximation has been

estimated. It has been found that the error in the eigenvalues

is tolerable, whereas that in the group delay difference is

relatively large.

APPENDIX I

l%OOF OF THE VALIDITY OF THE FUNCTIONAL (11)

We assume that I[@,Y?] is stationary for @ = @O and

Y = YO, and consider slightly deviated functions

@(r) = @o(r) + ii “ ~(r) (Al)

A=O. I \

10-2,

10-3:

1O-L:

10-5:

1-----1

‘0-7L!*=034
108 H

E ‘ i

10’

1 O-L

~ ,0-5

1 2 3 .4 5 6 78 910
a

Fig. 7. Error in the delay time caused by the scalar wave approximation

for p = 1.0, at x = 0.3. Derivatives (d/l/cfo))U and (dfl/dco), denote the

delay time per unit length obtained by the vectorial wave and scalar
wave analyses, respectively n ~ = 15.

where q(r) and ~(r) are arbitrary continuous functions of r,

and d denotes a small real quantity. Putting the above ~(r)

and Y(r) into (11 ) and assuming that l[@,Y] is stationary for

d = O, we obtain

1+No(u)q(a) + Q6Yo(u)L(a) = O. (A.3)
Y(r) = Ye(r)+ a ‘ ~(i’) (A.2)
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By partial integration, (A.3) may be rewritten as

Since q(r) and ~(r) are arbitrary functions of r, this equation

shows that @o(r-) and Ye(r) satisfy the vectorial wave

equations to be solved (3) and (4) and the boundary

conditions at r = a:

[= (X~2A) a I
~YO(a) + ~~o(a) (A.5)

1

[

(1 -f)d@o +~vo

1(x-f(a)) (1 -x) dr r .=.

1

[ 1

(1 - 2A) 9 @o(a) + ~’Ye(a) (A.6)
‘(X-2A) (1-x) a

which give the continuity of the electric and magnetic fields,

respectively. (The left-hand sides of (A.5) and (A.6) express

the fields in the core at r = a (see (8) and (9)). The right-hand

sides express those in the cladding.)

APPENDIX II

PROOF THAT (27) GIVES THE SCALAR WAVE EQUATIONS

We first put the scalar wave approximation (27) into (3)

and (4). Then, addition and subtraction of these equations

yield

%%:]+ [“”’(x-f)-:]
“—45+;+;&(x:f) H

= O (A.7)

+%%’%]+12’’’(X-’)-$I

where

q5(r) = [Q(r) + Y(r)]/2 (A.9)

V(r) = [Q(r) – Y(r)]/2. (A.1O)

Next we introduce transverse field functions R ~~(r) and

R~~(r) defined as

1
R.,(r) = —

[1
~+; d

(X -f) d~
(All)

1
REH(r) = —

[- 1(x-f) $
-;+. (A.12)

Substituting (A. 11) into (A.7) and (A. 12) into (A.8), we

obtain

%%+ [k2’’’f)-(:~21)21RHE=0‘A13)

%*)+ [k2n’(x-f)-:~lR’~=0 ‘A14)
which are known as the scalar wave equations.
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